Factores epigenéticos promotores de la obesidad en Latinoamérica
Artículos de Revisión
Juan José Medina Jasso, Jésus Pilo, Teresa Dawid de Vera, Alejandro Rego, Hatim Boughanem, Manuel Macias-Gonzalez, Libia Alejandra Garcìa Flores
Organismos colaboradores:
1.Clínica de Obesidad y Trastornos Metabólicos, Departamento de Endocrinología, Doctor Hospital AUNA; Monterrey, Nuevo León, México.
2. Departamento de Endocrinología y Nutrición, Hospital Universitario Virgen de la Victoria,
Málaga, España. Instituto de Investigación de Biomedicina en Málaga (IBIMA)-Bionand Plataforma, Universidad de Málaga, Málaga, España.
3.Universidad de Málaga (UMA). Departamento de Bioquímica y Biología Molecular
4. Instituto de Investigación Biomédica en Córdoba (IMIBIC), Córdoba, España
5. CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, España.
6. Unidad de Lípidos y Ateroesclerosis, Departamento de Medicina Interna, Hospital Universitario Reina Sofía, Córdoba, España.
DOI: 10.53435/funj.00989
Resumen:
El objetivo de esta revisión bibliográfica fue identificar y analizar los principales mecanismos epigenéticos vinculados al aumento de la obesidad en Latinoamérica, en el contexto de su transición nutricional y sociocultural. Se revisaron estudios sobre cómo factores ambientales —como la nutrición materna deficiente, el estrés psicosocial y los entornos obesogénicos— durante etapas críticas del desarrollo prenatal y postnatal pueden inducir modificaciones epigenéticas persistentes. Los resultados destacan la implicación de mecanismos como la metilación del ADN, las modificaciones de histonas y la remodelación de la cromatina en la regulación génica asociada con obesidad, síndrome metabólico, diabetes tipo 2 y enfermedades cardiovasculares. Estos procesos permiten entender la variabilidad fenotípica entre individuos con genomas similares expuestos a ambientes distintos. En Latinoamérica, se observa un desajuste entre una programación fetal adaptada a la escasez y un entorno actual caracterizado por sobrealimentación, desigualdad y estrés metabólico, lo que podría favorecer la aparición precoz de enfermedades cardiometabólicas. Se concluye que incorporar el enfoque epigenético en políticas públicas es clave para prevenir estas enfermedades. Se recomienda promover programas de nutrición materna, reducir desigualdades sociales y fomentar entornos saludables adaptados a las realidades específicas de la región.
Palabras Clave:
obesidad, epigenética, nutrición, desarrollo prenatal, Latinoamérica
Bibliografía:
-
Lobstein T, Jackson-Leach R, Powis J, Brinsden H, Gray M. Obesity Atlas 2023 | World Obesity Federation Global Obesity Observatory. Obes Atlas 2023 [Internet]. 2023 [cited 2024 Apr 8];5:1–232. Available from: https://data.worldobesity.org/publications/?cat=15
-
Lopez-Jaramillo P, Gomez-Arbelaez D, Sotomayor-Rubio A, Mantilla-Garcia D, Lopez-Lopez J. Maternal undernutrition and cardiometabolic disease: A latin american perspective [Internet]. Vol. 13, BMC Medicine. BioMed Central Ltd.; 2015 [cited 2024 Apr 29]. p. 1–11. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-015-0293-8
-
Fisberg M, Kovalskys I, Gómez G, Rigotti A, Cortés LY, Herrera-Cuenca M, et al. Latin American Study of Nutrition and Health (ELANS): Rationale and study design. BMC Public Health [Internet]. 2016 Jan 30 [cited 2024 Apr 18];16(1). Available from: https://pubmed.ncbi.nlm.nih.gov/26829928/
-
Romero-Martínez M, Shamah-Levy T, Vielma-Orozco E, Heredia-Hernández O, Mojica-Cuevas J, Cuevas-Nasu L, et al. National Health and Nutrition Survey 2018-19: Methodology and perspectives. Salud Publica Mex [Internet]. 2019 [cited 2024 Apr 8];61(6):917–23. Available from: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0036-36342019000600917&lng=es&nrm=iso&tlng=es
-
Silva Palma IC. Día Mundial de la Obesidad 2023. Psic-Obesidad [Internet]. 2024 [cited 2024 Apr 8];13(49):5–7. Available from: https://codigof.mx/conmemoracion-del-dia-mundial-de-la-obesidad-2023/
-
Guevara-Ramírez P, Cadena-Ullauri S, Ruiz-Pozo VA, Tamayo-Trujillo R, Paz-Cruz E, Simancas-Racines D, et al. Genetics, genomics, and diet interactions in obesity in the Latin American environment. Vol. 9, Frontiers in Nutrition. Frontiers Media S.A.; 2022. p. 1063286.
-
López-Jaramillo P. Cardiometabolic Disease in Latin America: The Role of Fetal Programming in Response to Maternal Malnutrition. Rev Española Cardiol (English Ed. 2009 Jun;62(6):670–6.
-
Loos RJF, Yeo GSH. The bigger picture of FTO - The first GWAS-identified obesity gene [Internet]. Vol. 10, Nature Reviews Endocrinology. Nat Rev Endocrinol; 2014 [cited 2024 Apr 8]. p. 51–61. Available from: https://pubmed.ncbi.nlm.nih.gov/24247219/
-
Wierda RJ, Geutskens SB, Jukema JW, Quax PHA, van den Elsen PJ. Epigenetics in atherosclerosis and inflammation [Internet]. Vol. 14, Journal of Cellular and Molecular Medicine. Wiley-Blackwell; 2010 [cited 2024 Apr 12]. p. 1225–40. Available from: /pmc/articles/PMC3828841/
-
Ling C, Groop L. Epigenetics: A molecular link between environmental factors and type 2 diabetes [Internet]. Vol. 58, Diabetes. American Diabetes Association; 2009 [cited 2024 Apr 8]. p. 2718–25. Available from: /pmc/articles/PMC2780862/
-
Alfano R, Robinson O, Handakas E, Nawrot TS, Vineis P, Plusquin M. Perspectives and challenges of epigenetic determinants of childhood obesity: A systematic review. Obes Rev [Internet]. 2022 Jan 1 [cited 2024 Apr 8];23(S1). Available from: https://pubmed.ncbi.nlm.nih.gov/34816569/
-
Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition [Internet]. 2004 [cited 2024 Apr 8];20(1):63–8. Available from: https://pubmed.ncbi.nlm.nih.gov/14698016/
-
Youngson NA, Morris MJ. What obesity research tells us about epigenetic mechanisms [Internet]. Vol. 368, Philosophical Transactions of the Royal Society B: Biological Sciences. The Royal Society; 2013 [cited 2024 Apr 8]. Available from: /pmc/articles/PMC3539363/
-
Cuevas A, Alvarez V, Olivos C. The emerging obesity problem in Latin America [Internet]. Vol. 7, Expert Review of Cardiovascular Therapy. Expert Rev Cardiovasc Ther; 2009 [cited 2024 Apr 8]. p. 281–8. Available from: https://pubmed.ncbi.nlm.nih.gov/19296766/
-
Cohen DD, Gómez-Arbeláez D, Camacho PA, Pinzon S, Hormiga C, Trejos-Suarez J, et al. Low muscle strength is associated with metabolic risk factors in Colombian children: The ACFIES study. PLoS One [Internet]. 2014 Apr 8 [cited 2024 Apr 8];9(4). Available from: https://pubmed.ncbi.nlm.nih.gov/24714401/
-
Lopez-Jaramillo P, Cohen DD, Gómez-Arbeláez D, Bosch J, Dyal L, Yusuf S, et al. Association of handgrip strength to cardiovascular mortality in pre-diabetic and diabetic patients: A subanalysis of the ORIGIN trial. Int J Cardiol [Internet]. 2014 Jun 15 [cited 2025 Apr 15];174(2):458–61. Available from: https://pubmed.ncbi.nlm.nih.gov/24768457/
-
Lopez Jaramillo P, Lahera V, Lopez Lopez J. Epidemic of cardiometabolic diseases: A Latin American point of view [Internet]. Vol. 5, Therapeutic Advances in Cardiovascular Disease. Ther Adv Cardiovasc Dis; 2011 [cited 2024 Apr 8]. p. 119–31. Available from: https://pubmed.ncbi.nlm.nih.gov/21406494/
-
VerMilye MD, O’Neill LP, Turner BM. Transcription-independent heritability of induced histone modifications in the mouse preimplantation embryo. PLoS One [Internet]. 2009 Jun 30 [cited 2024 Apr 8];4(6):e6086. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006086
-
Weaver ICG. Shaping adult phenotypes through early life environments [Internet]. Vol. 87, Birth Defects Research Part C - Embryo Today: Reviews. John Wiley & Sons, Ltd; 2009 [cited 2024 Apr 8]. p. 314–26. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/bdrc.20164
-
Gallou-Kabani C, Junien C. Nutritional epigenomics of metabolic syndrome new perspective against the epidemic [Internet]. Vol. 54, Diabetes. Diabetes; 2005 [cited 2024 Apr 8]. p. 1899–906. Available from: https://pubmed.ncbi.nlm.nih.gov/15983188/
-
Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A [Internet]. 2007 Dec 4 [cited 2024 Apr 8];104(49):19351–6. Available from: https://pubmed.ncbi.nlm.nih.gov/18042717/
-
Cabana J, Sabatelli D, Tonietti M, Flores A, Conti R, Pasqualini D, et al. Developmental origins of health and disease concept: The environment in the first 1000 days of life and its association with noncommunicable diseases. Arch Argent Pediatr [Internet]. 2020 [cited 2024 Apr 18];118(4):S118–29. Available from: https://www.sap.org.ar/docs/publicaciones/archivosarg/2020/v118n4a27s.pdf
-
Szostak-Wegierek D. Intrauterine nutrition: Long-term consequences for vascular health [Internet]. Vol. 6, International Journal of Women’s Health. Dove Press; 2014 [cited 2024 Apr 8]. p. 647–56. Available from: /pmc/articles/PMC4103922/
-
Wang T, Liu C, Feng C, Wang X, Lin G, Zhu Y, et al. IUGR alters muscle fiber development and proteome in fetal pigs. Front Biosci [Internet]. 2013 Jan 1 [cited 2024 Apr 11];18(2):598–607. Available from: https://pubmed.ncbi.nlm.nih.gov/23276945/
-
Burdge GC, Lillycrop KA. Nutrition, epigenetics, and developmental plasticity: Implications for understanding human disease [Internet]. Vol. 30, Annual Review of Nutrition. Annu Rev Nutr; 2010 [cited 2024 Apr 8]. p. 315–39. Available from: https://pubmed.ncbi.nlm.nih.gov/20415585/
-
Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DIW, Roseboom TJ. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG An Int J Obstet Gynaecol [Internet]. 2008 Sep [cited 2024 Apr 8];115(10):1243–9. Available from: https://pubmed.ncbi.nlm.nih.gov/18715409/
-
Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of In Utero and Early-Life Conditions on Adult Health and Disease. N Engl J Med [Internet]. 2008 Jul 3 [cited 2024 Apr 8];359(1):61–73. Available from: https://pubmed.ncbi.nlm.nih.gov/18596274/
-
Plagemann A, Harder T, Melchior K, Rake A, Rohde W, Dörner G. Elevation of hypothalamic neuropeptide Y-neurons in adult offspring of diabetic mother rats. Neuroreport [Internet]. 1999 [cited 2024 Apr 8];10(15):3211–6. Available from: https://pubmed.ncbi.nlm.nih.gov/10574562/
-
Aguilera O, Fernández AF, Muñoz A, Fraga MF. Epigenetics and environment: A complex relationship [Internet]. Vol. 109, Journal of Applied Physiology. J Appl Physiol (1985); 2010 [cited 2024 Apr 8]. p. 243–51. Available from: https://pubmed.ncbi.nlm.nih.gov/20378707/
-
Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes [Internet]. Vol. 21, Trends in Endocrinology and Metabolism. Trends Endocrinol Metab; 2010 [cited 2024 Apr 8]. p. 223–9. Available from: https://pubmed.ncbi.nlm.nih.gov/19864158/
-
Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU. Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem [Internet]. 2008 May 16 [cited 2024 Apr 8];283(20):13611–26. Available from: https://pubmed.ncbi.nlm.nih.gov/18326493/
-
McConnell JML, Petrie L. Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod Biomed Online [Internet]. 2004 [cited 2024 Apr 8];9(4):418–24. Available from: https://pubmed.ncbi.nlm.nih.gov/15511342/
-
Thompson JG, Gardner DK, Pugh PA, McMillan WH, Tervit HR. Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol Reprod [Internet]. 1995 [cited 2024 Apr 12];53(6):1385–91. Available from: https://pubmed.ncbi.nlm.nih.gov/8562695/
-
Hales CN, Barker DJP, Clark PMS, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. Br Med J [Internet]. 1991 [cited 2024 Apr 12];303(6809):1019–22. Available from: https://pubmed.ncbi.nlm.nih.gov/1954451/
-
Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia [Internet]. 1993 Jan [cited 2024 Apr 12];36(1):62–7. Available from: https://pubmed.ncbi.nlm.nih.gov/8436255/
-
Petrie L, Duthie SJ, Rees WD, McConnell JML. Serum concentrations of homocysteine are elevated during early pregnancy in rodent models of fetal programming. Br J Nutr [Internet]. 2002 Nov [cited 2024 Apr 12];88(5):471–7. Available from: https://pubmed.ncbi.nlm.nih.gov/12425727/
-
Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet [Internet]. 2009 [cited 2024 Apr 8];18(20):3769–78. Available from: https://pubmed.ncbi.nlm.nih.gov/19605411/
-
López-Jaramillo P, Gómez-Arbeláez D, López-López J, López-López C, Martínez-Ortega J, Gómez-Rodríguez A, et al. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Investig [Internet]. 2014 [cited 2024 Apr 12];18(1):37–45. Available from: https://pubmed.ncbi.nlm.nih.gov/25389999/
-
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Moreno-Aliaga MJ, Martinez JA. Endoplasmic reticulum stress epigenetics is related to adiposity, dyslipidemia, and insulin resistance [Internet]. Vol. 7, Adipocyte. Adipocyte; 2018 [cited 2024 Apr 18]. p. 137–42. Available from: https://pubmed.ncbi.nlm.nih.gov/29570038/
-
Hotamisligil GS. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease [Internet]. Vol. 140, Cell. Cell; 2010 [cited 2024 Apr 12]. p. 900–17. Available from: https://pubmed.ncbi.nlm.nih.gov/20303879/
-
Torres-Salazar Q, Martínez-López Y, Reyes-Romero M, Pérez-Morales R, Sifuentes-Álvarez A, Salvador-Moysén J. Differential Methylation in Promoter Regions of the Genes NR3C1 and HSP90AA1, Involved in the Regulation, and Bioavailability of Cortisol in Leukocytes of Women With Preeclampsia. Front Med [Internet]. 2020 Jun 16 [cited 2024 Apr 18];7. Available from: https://pubmed.ncbi.nlm.nih.gov/32656215/
-
Snoeck A, Remacle C, Reusens B, Hoet JJ. Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Neonatology [Internet]. 1990 [cited 2024 Apr 12];57(2):107–18. Available from: https://pubmed.ncbi.nlm.nih.gov/2178691/
-
Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ. Islet function in offspring of mothers on low-protein diet during gestation. Diabetes [Internet]. 1991 [cited 2024 Apr 12];40(SUPPL. 2):115–20. Available from: https://pubmed.ncbi.nlm.nih.gov/1748239/
-
Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A [Internet]. 2005 Jul 26 [cited 2024 Apr 12];102(30):10604–9. Available from: https://pubmed.ncbi.nlm.nih.gov/16009939/
-
Xu J, Watts JA, Pope SD, Gadue P, Kamps M, Plath K, et al. Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev [Internet]. 2009 Dec 15 [cited 2024 Apr 12];23(24):2824–38. Available from: http://genesdev.cshlp.org/content/23/24/2824.full
-
Natoli G. Control of NF-kappaB-dependent transcriptional responses by chromatin organization. [Internet]. Vol. 1, Cold Spring Harbor perspectives in biology. Cold Spring Harb Perspect Biol; 2009 [cited 2024 Apr 12]. Available from: https://pubmed.ncbi.nlm.nih.gov/20066094/
-
Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. In: Journal of Nutrition [Internet]. J Nutr; 2007 [cited 2024 Apr 12]. Available from: https://pubmed.ncbi.nlm.nih.gov/17182830/
-
Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, et al. Identification and Characterization of Enhancers Controlling the Inflammatory Gene Expression Program in Macrophages. Immunity [Internet]. 2010 Mar [cited 2024 Apr 12];32(3):317–28. Available from: https://pubmed.ncbi.nlm.nih.gov/20206554/
Texto Completo:
PDF